DEVELOPMENT OF THE PROBABLY-GEOGRAPHICAL FORECAST METHOD FOR DANGEROUS WEATHER PHENOMENA

Elena S. Popova, Sergey S. Andreev, Nikolay Bardakov


Аннотация


This paper presents a scheme method of probably-geographical forecast for dangerous weather phenomena. Discuss two general realization stages of this method. Emphasize that developing method is response to actual questions of modern weather forecast and it’s appropriate phenomena: forecast is carried out for specific point in space and appropriate moment of time.

Ключевые слова


synoptic processes; predictors; neuromodulatory; markov network

Полный текст:

PDF>PDF (English)

Литература


Bertotti L., Bidlot Jr., Buizza R., Cavaleri L., Janousek M. Deterministic and ensemble-based prediction of Adriatic Sea sirocco storms leading to ‘acqua alta’ in Venice. Quarterly Journal of the Royal Meteorological Society, (2011). Volume 137. Issue 659, pp. 1446-1466. Part B.

Carrassi A., Vannitsem S. State and parameter estimation with the extended Kalman filter: an alternative formulation of the model error dynamics. Quarterly Journal of the Royal Meteorological Society, (2011). Volume 137. Issue 655, pp. 435-451. Part B.

Prates F., Buizza R. PRET, the Probability of RETurn: a new probabilistic product based on generalized extreme-value theory. Quarterly Journal of the Royal Meteorological Society, (2011). Volume 137. Issue 655, pp. 521-537. Part B.

Popova E.S. Dangerous weather of the South of Russia. St. Petersburg, publishing house of the VVM, 2006. 216 p., 44 ill. Name: 156. literature, tab. 20.

Popova E.S. The geography and Genesis of severe weather in the southern regions of Russia (strong winds)//Proceedings of the Russian geographic society (2009). Volume 141. Vol. 2, pp. 51-56.

Popova E.S., Andreev S.S. Probability-geographical forecast of dangerous weather phenomena//Fundamental research, №8 (part 7) (2014). pp. 1622-1625.


Ссылки

  • На текущий момент ссылки отсутствуют.


(c) 2016 International Journal of Advanced Studies



Контент доступен под лицензией Creative Commons Attribution-NonCommercial-NoDerivs 4.0.

ISSN 2328-1391 (print), ISSN 2227-930X (online)