МОЛЕКУЛЫ МИКРОРНК КАК ИНСТРУМЕНТ ДИАГНОСТИКИ ЗАБОЛЕВАНИЙ ГОЛОВЫ И ШЕИ, СОПРОВОЖДАЮЩИХСЯ НЕОПЛАСТИЧЕСКИМ РОСТОМ

Kirill Pavlovich Anikin, Tatyana Gennadievna Ruksha, Svetlana Lukinichna Baksheeva, Tamara Vladimirovna Kazantseva, Nadezhda Vladimirovna Palkina, Tatyana Leonidovna Marugina


Аннотация


Взаимодействие между участками ДНК, кодирующими белки, и микроРНК до сих пор является одним из самым удивительных и неизведанных открытий в молекулярной онкологии.

В течение времени результаты многочисленных исследований меняли отношение к молекулам микроРНК: то, что раньше называли «генетическим мусором», оказалось наиважнейшим регулятором опухолевой трансформации, прогрессии и последующей инвазии в интактные ткани.

МикроРНК представляют собой короткие транскрипционные последовательности, которые не участвуют в непосредственной продукции протеинов или небольших аминокислотных цепей, однако, действуют, осуществляя контроль синтеза белка, тем самым принимая участие в жизнедеятельности клетки на транскрипционном, посттранскрипционном и(или) трансляционном уровне.

В данной статье мы рассматриваем микроРНК как биомаркер, позволяющий производить диагностику неоплазий челюстно-лицевой области на самом раннем этапе их развития.


Ключевые слова


микроРНК; плоскоклеточный рак полости рта; биосинтез микроРНК; онкоген; опухолевый супрессор

Полный текст:

PDF>PDF

Литература


Baba S., Hara A., Kato K., et al. Aberrant promoter hypermethylation of the CHFR gene in oralsquamous cell carcinomas. Oncol Rep. 2009; 22(5):1173–1179. [PubMed: 19787237] Lopez-Serra P, Esteller M. DNA methylation-associated silencing of tumor-suppressor microRNAs in cancer. Oncogene. 2012; 31(13):1609–1622. [PubMed: 21860412].

Bader A.G. miR-34 – a microRNA replacement therapy is headed to the clinic. Front Genet. 2012; 3:120. [PubMed: 22783274].

Barry G., Briggs J.A., Vanichkina D.P., Poth E.M. The long non-coding RNA Gomafu is acutely regulated in response to neuronal activation and involved in schizophrenia-associated alternative splicing. Mol Psychiatry. 2014; 19(4):486–94. [PubMed: 23628989].

Benes V., Castoldi M. Expression profiling of microRNA using real-time quantitative PCR, how to use it and what is available. Methods. 2010; 50(4):244–249. [PubMed: 20109550].

Cabianca D.S., Casa V., Bodega B., et al. A long ncRNA links copy number variation to a polycomb/trithorax epigenetic switch in FSHD muscular dystrophy. Cell. 2012; 149(4):819–831. [PubMed: 22541069].

Cervigne N.K., Reis P.P., Machado J., et al. Identification of a microRNA signature associated with progression of leukoplakia to oral carcinoma. Hum Mol Genet. 2009; 18(24):4818–4829. miRNA profiling study on oral premalignant lesions. This study classified 109 miRNAs that are highly expressed in progressive leukoplakia and invasive OSCC only. Therefore, it helped to discover markers that identify lesions at high risk for malignant transformation. [PubMed: 19776030].

Cheng H., Zhang L., Cogdell D.E., et al. Circulating plasma MiR-141 is a novel biomarker for metastatic colon cancer and predicts poor prognosis. PLoS One. 2011; 6(3):e17745. [PubMed: 21445232].

Dharap A., Nakka V.P., Vemuganti R. Effect of focal ischemia on long noncoding RNAs. Stroke. 2012; 43(10):2800–2802. [PubMed: 22949471].

Eichelser C., Flesch-Janys D., Chang-Claude J., Pantel K., Schwarzenbach H. Deregulated serum concentrations of circulating cell-free microRNAs miR-17, miR-34a, miR-155, and miR-373 in human breast cancer development and progression. Clin Chem. 2013; 59(10):1489–1496. [PubMed: 23748853].

Guay C., Jacovetti C., Nesca V., Motterle A., Tugay K., Regazzi R. Emerging roles of non-coding RNAs in pancreatic β-cell function and dysfunction. Diabetes Obes Metab. 2012; 14(Suppl 3): 12–21. [PubMed: 22928560].

Heneghan H.M., Miller N., Kerin M.J. MiRNAs as biomarkers and therapeutic targets in cancer. Curr Opin Pharmacol. 2010; 10(5):543–550. [PubMed: 20541466].

Huang Z., Huang D., Ni S., Peng Z., Sheng W., Du X. Plasma microRNAs are promising novel biomarkers for early detection of colorectal cancer. Int J Cancer. 2010; 127(1):118–126. [PubMed: 19876917].

Imamura K., Imamachi N., Akizuki G. Long noncoding RNA NEAT1-dependent SFPQ relocation from promoter region to paraspeckle mediates IL8 expression upon immune stimuli. Mol Cell. 2014; 53(3):393–406. [PubMed: 24507715].

Janssen H.L., Reesink H.W., Lawitz E.J., et al. Treatment of HCV infection by targeting microRNA. N Engl J Med. 2013; 368(18):1685–1694. [PubMed: 23534542].

Jakymiw A., Patel R.S., Deming N., et al. Overexpression of dicer as a result of reduced let-7 microRNA levels contributes to increased cell proliferation of oral cancer cells. Genes Chromosomes Cancer. 2010; 49(6):549–559. [PubMed: 20232482].

Jiang L., Liu X., Kolokythas A., et al. Downregulation of the Rho GTPase signaling pathway is involved in the microRNA-138-mediated inhibition of cell migration and invasion in tongue squamous cell carcinoma. Int J Cancer. 2010; 127(3):505–512. [PubMed: 20232393].

Jiang L., Liu X., Kolokythas A., et al. Downregulation of the Rho GTPase signaling pathway is involved in the microRNA-138-mediated inhibition of cell migration and invasion in tongue squamous cell carcinoma. Int J Cancer. 2010; 127(3):505–512. [PubMed: 20232393].

Kloosterman W.P., Wienholds E., De Bruijn E., Kauppinen S., Plasterk R.H. In situ detection of miRNAs in animal embryos using LNA-modified oligonucleotide probes. Nat Methods. 2006; 3(1):27–29. [PubMed: 16369549].

Li Y., Xu J., Chen H., et al. Comprehensive analysis of the functional microRNA-mRNA regulatory network identifies miRNA signatures associated with glioma malignant progression. Nucleic Acids Res. 2013; 41(22):e203. [PubMed: 24194606].

Lin Q., Chen T., Lin Q., et al. Serum miR-19a expression correlates with worse prognosis of patients with non-small cell lung cancer. J Surg Oncol. 2013; 107(7):767–771. [PubMed: 23609137].

Lindow M., Kauppinen S. Discovering the first microRNA-targeted drug. J Cell Biol. 2012; 199(3):407–412. [PubMed: 23109665].

Ling H., Fabbri M., Calin G.A. MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat Rev Drug Discov. 2013; 12(11):847–865. [PubMed: 24172333].

Liu C.J., Kao S.Y., Tu H.F., Tsai M.M., Chang K.W., Lin S.C. Increase of microRNA miR-31 level inplasma could be a potential marker of oral cancer. Oral Dis. 2010; 16(4):360–364. [PubMed: 20233326].

Liu X., Wang A., Heidbreder C.E., et al. MicroRNA-24 targeting RNA-binding protein DND1 in tongue squamous cell carcinoma. FEBS Lett. 2010; 584(18):4115–4120. [PubMed: 20816961].

Lu Y.C., Chen Y.J., Wang H.M., et al. Oncogenic function and early detection potential ofmiRNA-10b in oral cancer as identified by microRNA profiling. Cancer Prev Res (Phila). 2012; 5(4):665–674. [PubMed: 22318752].

Mancuso M., Matassa D.S., Conte M., et al. H3K4 histone methylation in oral squamous cellcarcinoma. Acta Biochim Pol. 2009; 56(3):405–410. [PubMed: 19753335].

Meng W., Ye Z., Cui R., et al. MicroRNA-31 predicts the presence of lymph node metastases and survival in patients with lung adenocarcinoma. Clin Cancer Res. 2013; 19(19):5423–5433. [PubMed: 23946296].

Ogata-Kawata H., Izumiya M., Kurioka D., et al. Circulating Exosomal microRNAs as Biomarkers of Colon Cancer. PLoS One. 2014; 9(4):e92921. [PubMed: 24705249]

Pentheroudakis G., Pavlidis N., Fountzilas G., et al. Novel microRNA-based assay demonstrates 92% agreement with diagnosis based on clinicopathologic and management data in a cohort of patients with carcinoma of unknown primary. Mol Cancer. 2013; 12:57. [PubMed: 23758919].

Perego P., Zuco V., Gatti L., Zunino F. Sensitization of tumor cells by targeting histone deacetylases. Biochem Pharmacol. 2012; 83(8):987–994. [PubMed: 22120677].

Pu X.X., Huang G.L., Guo H.Q, et al. Circulating miR-221 directly amplified from plasma is a potential diagnostic and prognostic marker of colorectal cancer and is correlated with p53 expression. J Gastroenterol Hepatol. 2010; 25(10):1674–1680. [PubMed: 20880178].

Reis P.P., Tomenson M., Cervigne N.K., et al. Programmed cell death 4 loss increases tumor cellinvasion and is regulated by miR-21 in oral squamous cell carcinoma. Mol Cancer. 2010; 9:238. [PubMed: 20831814].

Rodríguez M., Silva J., López-Alfonso A., et al. Different exosome cargo from plasma/bronchoalveolar lavage in non-small-cell lung cancer. Genes Chromosomes Cancer. 201410.1002/gcc.22181

Rosenwald S., Gilad S., Benjamin S., et al. Validation of a microRNA-based qRT-PCR test for accurate identification of tumor origin. Mod Pathol. 2010; 23(6):814–823. [PubMed: 20348879].

Scaria V., Pasha A. Long Non-Coding RNAs in Infection Biology. Front Genet. 2013; 3:308. [PubMed: 23316211].

Sempere L.F., Preis M., Yezefski T., et al. Fluorescence-based codetection with protein markers reveals distinct cellular compartments for altered MicroRNA expression in solid tumors. Clin Cancer Res. 2010; 16(16):4246–4255. [PubMed: 20682703].

Shaw R.J., Hall G.L., Woolgar J.A., et al. Quantitative methylation analysis of resection margins andlymph nodes in oral squamous cell carcinoma. Br J Oral Maxillofac Surg. 2007; 45(8):617–622. [PubMed: 17559992].

Tivnan A., Orr W.S., Gubala V., et al. Inhibition of neuroblastoma tumor growth by targeted delivery of microRNA-34a using anti-disialoganglioside GD2 coated nanoparticles. PLoS One. 2012; 7(5):e38129. [PubMed: 22662276].

Toiyama Y., Hur K., Tanaka K., et al. Serum miR-200c is a Novel Prognostic and MetastasisPredictive Biomarker in Patients With Colorectal Cancer. Ann Surg. 2014; 259(4):735–743. [PubMed: 23982750].

Tsujiura M., Komatsu S., Ichikawa D., et al. Circulating miR-18a in plasma contributes to cancer detection and monitoring in patients with gastric cancer. Gastric Cancer. 201410.1007/ s10120-014-0363-1

Wang J., Zhao J., Shi M., Ding Y., Sun H., Yuan F., Zou Z. Elevated expression of miR-210 predicts poor survival of cancer patients: a systematic review and meta-analysis. PLoS One. 2014; 9(2):e89223. [PubMed: 24586608].

Wang B., Zhang Q. The expression and clinical significance of circulating microRNA-21 in serum of five solid tumors. J Cancer Res Clin Oncol. 2012; 138(10):1659–1666. [PubMed: 22638884].

Westermann A.M., Schmidt D., Holdenrieder S., et al. Serum microRNAs as biomarkers in patients undergoing prostate biopsy: results from a prospective multi-center study. Anticancer Res. 2014; 34(2):665–669. [PubMed: 24510997].

Wiklund E.D., Gao S., Hulf T., et al. MicroRNA alterations and associated aberrant DNAmethylation patterns across multiple sample types in oral squamous cell carcinoma. PLoS ONE. 2011; 6(11):E27840. [PubMed: 22132151].

Wong T.S., Liu X.B., Wong B.Y., Ng R.W., Yuen A.P., Wei W.I. Mature miR-184 as potential oncogenic microRNA of squamous cell carcinoma of tongue. Clin Cancer Res. 2008; 14(9): 2588–2592. miRNA profiling study on tongue squamous cell carcinoma and normal tissues examining the expression level of 156 miRNAs. [PubMed: 18451220].

Wu Y., Crawford M., Mao Y., et al. Therapeutic Delivery of MicroRNA-29b by Cationic Lipoplexes for Lung Cancer. Mol Ther Nucleic Acids. 2013; 2:e84. [PubMed: 23591808].

Xu J., Wu C., Che X., et al. Circulating microRNAs, miR-21, miR-122, and miR-223, in patients with hepatocellular carcinoma or chronic hepatitis. Mol Carcinog. 2011; 50(2):136–142. [PubMed: 21229610].

Yamamoto D., Shima K., Matsuo K., et al. Ornithine decarboxylase antizyme induceshypomethylation of genome DNA and histone H3 lysine 9 dimethylation (H3K9me2) in human oral cancer cell line. PLoS ONE. 2010; 5(9):E12554. [PubMed: 20838441].

Yang C., Wang C., Chen X., et al. Identification of seven serum microRNAs from a genome-wide serum microRNA expression profile as potential noninvasive biomarkers for malignant astrocytomas. Int J Cancer. 2013; 132(1):116–127. [PubMed: 22674182].

Zhao G., Rodriguez B.L. Molecular targeting of liposomal nanoparticles to tumor microenvironment. Int J Nanomedicine. 2013; 8:61–71. [PubMed: 23293520].

Zheng H., Zhang L., Zhao Y., et al. Plasma miRNAs as diagnostic and prognostic biomarkers for ovarian cancer. PLoS One. 2013; 8(11):e77853. [PubMed: 24223734].

Zhu C., Ren C., Han J., et al. A five-microRNA panel in plasma was identified as potential biomarker for early detection of gastric cancer. Br J Cancer. 2014; 110(9):2291–2299. [PubMed: 24595006].

Zion O., Burnstein I., Chajut A., et al. A Second-Generation MicroRNA-Based Assay for Diagnosing Tumor TissueOrigin. The Oncologist. 2012; 17:801–812. [PubMed: 22618571].




DOI: https://doi.org/10.12731/wsd-2017-4-77-95

Ссылки

  • На текущий момент ссылки отсутствуют.




(c) 2017 Kirill Pavlovich Anikin, Tatyana Gennadievna Ruksha, Svetlana Lukinichna Baksheeva, Tamara Vladimirovna Kazantseva, Nadezhda Vladimirovna Palkina, Tatyana Leonidovna Marugina

Лицензия Creative Commons
Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-NoDerivatives» («Атрибуция — Некоммерческое использование — Без производных произведений») 4.0 Всемирная.

ISSN 2072-0831 (print)

ISSN 2307-9428 (online)

                              

Контент доступен под лицензией Creative Commons Attribution-NonCommercial-NoDerivs 4.0.

HotLog Яндекс цитирования