OPPORTUNISTIC BACTERIA: PSEUDOMONAS PUTIDA
Аннотация
Background. This work aims to identify bacterial strains of Pseudomonas putida; opportunistic bacteria in groundwater in Algeria and to try to explain why their numbers are increasing this year compared to the previous year.
Materials and Methods. 46 groundwater samples were taken during the period from july 2016/ march 2017 at the level of 18 cities and 210 groundwater samples were taken during the period of january 2017 / october 2018 (32 cities in Algeria). Water was analyzed by the membrane filtration technique. After incubation, the characteristic colonies are identified by biochemical tests and 20 NE biochemical gallery.
Results and Discussion. We saw an increase number of Pseudomonas putida in the last and current year, the value is almost 1100 ufc / 250ml. An increase that can be explained by an optimal temperature between 25° C and 30° C and an optimal pH which is between 4 to 8. The use of P. putida strains in industrial processes, commercial products or consumer products may explain the high number of these bacterial strains in groundwater in Algeria.
Conclusion. Pseudomonas putida strains appear to be closely related to Pseudomonas fluorescens and that molecular biology techniques must be used to properly identify these two types of bacteria and to construct a phylogenetic tree of strains. Pseudomonas putida strains have no negative effect on the environment or on biological diversity; or endanger the environment that is essential to life and human health. Exposed the strains of P.putida bacteria for a long time to biocides and antibiotics may constitute a battery of defense mechanisms regardless of their targets of action.
Ключевые слова
Полный текст:
>PDF (English)Литература
Espinosa-Urgel M., Salido A., Ramos J. “Genetic Analysis of Functions Involved in Adhesion of Pseudomonas putida to Seeds”. Journal of Bacteriology. May 2000. Volume 182, рp. 2363–2369.
Kowalski H. “U.S. – German Research Consortium Sequences Genome of Versatile Soil Microbe”. J.Craig Venter Archive. December 2002.
Marcus A. “Versatile soil-dwelling microbe is mapped”. Genome News Network. January 2003.
NCBI. http://www.ncbi.nlm.nih.gov/sites/entrez?Db=genome&Cmd=ShowDetailView&TermToSearch=21068
Reanney D., Gowland P., Slater J. “Genetic Interactions Among Communities”. Microbes in Their Natural Environments. April 1983. Volume 34. Р. 408.
Otenio M.H., Lopes da Silva M.T., Marques M., Roseiro J., Bidoia E. “Benzene, Toluene and Xylene Biodegradation by Pseudomonas putida CCMI 852”. Brazilian Journal of Microbiology. Volume 36, pр. 258–261. http://www.scielo.br/pdf/bjm/v36n3/arq10.pdf
Romano J., Kolter R. “Pseudomonas-Saccharomyces Interactions: Influence of Fungal Metabolism on Bacterial Physiology and Survival”. Journal of Bacteriology. February 2005. Volume 187. p.940-948. http://jb.asm.org/cgi/content/full/187/3/940
Espinosa-Urgel M., Salido A., Ramos J. “Genetic Analysis of Functions Involved in Adhesion of Pseudomonas putida to Seeds”. Journal of Bacteriology. May 2000. Volume 182, рp. 2363–2369. http://jb.asm.org/cgi/content/full/182/9/2363
O’Connor K., Duetz W., Wind B., Dobson A.D.W. “The Effect of Nutrient Limitation of Styrene Metabolism in Pseudomonas putida CA-3”. Applied and Environmental Microbiology. October 1996. Volume 62, рp. 3594–3599.
Boopathi E., Rao K.S. “A sideophore from Pseudomonas putida type A1: structural and biological characterization”. November 1999. Volume 1435, рp. 30–40.
Lopez J.E., Henkels M.D. “Utilization of Heterologous Siderophores Enhances Levels of Iron Available to Pseudomonas putida in the Rhizosphere”. Applied and Environmental Microbiology. December 1999. Volume 65, рp. 5357–5363.
Miller C.D., Kim Y.C., Anderson A.J. “Cloning and mutational analysis of the gene for the stationary-phase inducible catalase (catC) from Pseudomonas putida”. Journal of Bacteriology. August 1997. Volume 179, рp. 5241–5245.
Härtig C., Loffhagen N., Harms H. “Formation of trans Fatty Acids Is Not Involved in Growth-Linked Membrane Adaptation of Pseudomonas putida”. Applied and Enbironmental Microbiology. April 2005. Volume 71, рp. 1915–1922.
M. Vicente and J.L. Canovas. “Glucolysis in Pseudomonas putida: Physiological Role of Alternative Routes from the Analysis of Defective Mutants” Journal of Bacteriology, 1973. Volume 116, pр. 908–914.
Dervisoglue E., Dundar D.O., Yegenaga I., Willke A. “Peritonitis due to Pseudomonas putida in a Patient Receiving Automated Peritoneal Dialysis”. Infection. 2007.
Otenio M.H., Da Silva M.T.L., Marques M.L.O, Roseiro J.C., Bidoia E.D. “Benzene, Toluene, and Xylene Biodegradation by Pseudomonas putida CCMI 852”. Brazilian Journal of Microbiology. 2005, рp. 258–261.
Russell A.D. 2002. Antibiotic and biocide resistance in bacteria: introduction. Journal of applied microbiology, 1S-3S: 92.
Guerin-Mechin L., Dubois-Brissonnet F., Heyd B. et Leveau J.Y., 1999. Specific variations of fatty acid composition of Pseudomonas aeruginosa ATCC 15442 induced by quaternary ammonium compounds and relation to bactericidal activity Journal of applied microbiology 87: 735–742.
Tattawasart U., Maillard J.Y., Furr J.R. et Russell A.D., 1999. Development of resistance to chlorhexidine diacetate and cetylpyridinium chloride in Pseudomonas stutzeri and changes in antibiotic susceptibility. Journal of Hospital Infection, 42: 219–29.
Hansen L.H., Jensen L.B., Sorensen H.I. et Sorensen S.J., 2007. Substrate specificity of the OqxAB multidrug resistance pump in Escherichia coli and selected enteric bacteria. J Antimicrob Chemother, 60: 145–7.
Bailey A.M., Constantinidou C., Ivens A., Garvey M.I., Webber M.A., Coldham N., Hobman J.L., Wain J., Woodward M.J. et Piddock L.J., 2009. Exposure of Escherichia coli and Salmonella enterica serovar Typhimurium to triclosan induces a species-specific response, including drug detoxification. Journal of Antimicrobial Chemotherapy, 64: 973–985.
Grkovic S., Brown M.H. et Skurray R.A., 2002. Regulation of bacterial drug export systems. Microbiology and Molecular Biology Reviews. 66: 671–701.
Chen G.Q., Wu Q., 2005. The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials 26, 6565–6578.
Lombardi G., Luzzaro F., Docquier J.D., Riccio M.L., Perilli M., Colì A., Amicosante G., Rossolini G.M., Toniolo A. Nosocomial Infections Caused by Multidrug-Resistant Isolates of Pseudomonas Putida Producing VIM-1 Metallo-β-Lactamase. J Clin Microbiol 40 (11).2002, рр. 4051–4055.
Wu, H. Yue, J. Lu, C. Li.Characterization of rhizobacterial strain Rs-2 with ACC deaminase activity and its performance in promoting cotton growth under salinity stress world. J. Microbiol. Biotechnol., 28 (2012), рр. 2383–2393.
Environnement Canada. http://www.ec.gc.ca/ese-ees/F16CFAE3-F496-4550-9227-A130A74D2D03/FSAR-P-putida-FR.pdf
Araoka H., Baba M., Tateda K., Ishii Y., Oguri T., Okuzumi K., Oishi T., Mori S., Mitsuda T., Moriya K., Nakamori Y., Ohmagari N., Yamaguchi K., Yoneyama A. ABX Combination Therapy Study Group In vitro combination effects of aztreonam and aminoglycoside against multidrug-resistant Pseudomonas aeruginosa in Japan. Jpn J Infect Dis. 2012;65:84–87. [PubMed]
Moore R.D., Lietman P.S., Smith C.R. Clinical response to aminoglycoside therapy: importance of peak concentration to minimal inhibitory concentration. J Infect Dis. 1987; 155:93–99. doi: 10.1093/infdis/155.1.93. [PubMed]
Meyer A et al. Cours de microbiologie générale avec problèmes et exercices corrigés Broché//Doin France. 2004. P. 430.
http://guillaumegaouyer.emonsite.com/medias/files/20130711200101098.pdf. Biomérieux, REF 20 050 07615 J –FR 2006/02.Système d’identification des bacilles à gram négatif non entérobactéries et non fastidieux.
DOI: https://doi.org/10.12731/wsd-2018-5-132-143
Ссылки
- На текущий момент ссылки отсутствуют.
(c) 2018 Yacine Haffaressas, Nassime Ayad, Rachida Boussayoud, Fawzia Mouffok
Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-NoDerivatives» («Атрибуция — Некоммерческое использование — Без производных произведений») 4.0 Всемирная.
ISSN 2658-6649 (print)
ISSN 2658-6657 (online)