НОВЫЙ ТИП ТЕРМОГЕННЫХ АДИПОЦИТОВ: ПРОИСХОЖДЕНИЕ, СВОЙСТВА, ФУНКЦИИ
Аннотация
Термогенез в жировых тканях рассматривается как потенциальная мишень в терапии ожирения и метаболического синдрома. Молекулярные механизмы, регуляция термогенеза детально изучены в бурой жировой ткани. Целью данного обзора является систематизация сведений о новом типе термогенных адипоцитов, обнаруживаемых в депо белого жира.
Особенности морфологии, биохимии, предполагаемое онтогенетическое происхождение этих клеток, факторы, поддерживающие процессы их дифференцировки во взрослом организме, рассматриваются в сравнении с типичными бурыми и белыми адипоцитами. Приведены сведения об их анатомической локализации и термогенном потенциале у человека. Эволюционное появление двух типов термогенных клеток с разной степенью пластичности, во-первых, расширило диапазон термогенных реакций, во-вторых, способствовало более экономному использованию энергосубстратов для целей терморегуляции. Суммарный вклад термогенных адипоцитов нового типа в энергообмен человека и животных, возможные регуляторные функции этих клеток требуют дальнейших исследований.
Ключевые слова
Полный текст:
>PDFЛитература
Медведев Л.Н., Елсукова Е.И. Бурая жировая ткань: молекулярно-клеточные основы регулируемого термогенеза. Красноярск: «Амальгама», 2002. 528 с.
Barbatelli G., Murano I., Madsen L., Hao Q., Jimenez M., Kristiansen K, Giacobino J.P., De Matteis R., Cinti S. The emergence of cold-induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation. // Am. J. Physiol. Endocrinol. Metab., 2010, 298, pp. E1244–E1253.
Billon N., Iannarelli P., Monteiro M.C.,Iavieux-Pardanaud C., Richardson W., Kessaris N., Dani C., Dupin E. The generation of adipocytes by the neural crest. // Development, 2007, 134, pp. 2283–2292.
Birsoy K., Festuccia W., Laplante M. A comparative perspective on lipid storage in animals // J. Cell Sci., 2013, 126, pp. 1541–1552.
Bordicchia M., Liu D., Amri E., Ailhaud G., Dessi-Fulgheri P., Zhang C., Takanashi N., Sarzani R., Collins S. Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic program in mouse and human adipocytes. // J. Clin. Invest., 2012, 122, pp. 1022–1036.
Boström P., Wu J., Jedrychowski M., Korde A., Ye L., Lo J., Rasbach K., Boström E., Choi J., Long J., Kajimura S., Zingaretti M., Vind B., Tu H., Cinti S., Hoilund K., Gygi S., Spiegelman B. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. // Nature, 2012, 481, pp. 463–468.
Cannon B., Nedergaard J. Brown adipose tissue: function and physiological significance. // Physiol. Rev., 2004, 84, pp. 277–359.
Cannon B., Nedergaard J. Yes, even human brown fat is on fire! // J. Clin. Invest., 2012, 122, pp. 486–489.
Chabowska-Kita A., Kozak L.P. The critical period for brown adipocyte development: genetic and environmental influences. // Obesity (Silver Spring), 2016, 24, pp. 283–290.
Cinti S. Transdifferentiation properties of adipocytes in the adipose organ. // Am J. Physiol., 2009, 297, pp. E977–986.
Cinti S. The adipose organ at a glance. // Disease Models Mechanisms, 2012, 5, pp. 588–594.
Cohen P., Levy JD, Zhang Y, Frontini A., Kolodin D., Svensson K., Lo J., Zeng X., Ye L., Khandekar M., Wu J, Gunawardana S., Banks A., Campores J., Jurczak M., Kajimura S., Piston D, Mathis D., Cinti S., Shulman G., Seale P., Spiegelman B. Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch. // Cell, 2014, 156, pp. 304–316.
Cohen P., Spiegelman B. Brown and beige fat: molecular parts of a thermogenic machine. Diabetes, 2015, 64, pp. 2346–2351.
Cousin B., Cinti S., Morroni M., Raimbault S., Ricquier D., Penicaud L., Casteilla L. Occurrence of brown adipocytes in rat white adipose tissue: molecular and morphological characterization. // J. Cell. Sci., 1992, 103, pp. 931–942.
Cristancho A., Lazar M. Forming functional fat: a growing understanding of adipocyte differentiation. // Nat. Rev Mol. Cell Biol, 2011, 12, pp. 722–734.
Cypess A.M., Lehman S., Williams G. et al. Identification and importance of brown adipose tissue in adult humans. // N. Engl. J. Med., 2009, 360, pp. 1509–1517.
Cypess A., White A., Vernochet C., Schulz T., Xue R., Sass C., Huang T., Roberts-Toler C., Weiner L., Sze C., Chacko A., Deschamps L., Herder L., Truchan N., Glasgow A., Holman A., Gavrila A., Hasselgren P., Mori M., Molla M., Tseng Y. Anatomical localization, gene expression profiling and functional characterization of adult human neck brown fat. // Nat Med., 2013, 19, pp. 635–639.
Elsukova E.I., Medvedev L.N., Mizonova O.V. Physiological features of perigonadal adipose tissue containing uncoupling protein UCP1 in ICR mice. // Bull. Exp. Biol. Med., 2016, 161, pp. 347–350.
Fedorenko A., Lishko P.V., Kirichok Y. Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria. // Cell, 2012, 151, pp. 400–413.
Feil S., Rafael J. Effect of acclimation temperature on the concentration of uncoupling protein and GDP binding in rat brown fat mitochondria. // Eur. J. Biochem., 1994, 219, pp. 681–690.
Fisher F.M., Kleiner S., Douris N., Fox E., Mepani R., Verdequer F., Wu J., Kharitonenkov A., Flier J., Maratos-Flier E., Spiegelman B. FGF21 regulates PGC-1α and browning of white adipose tissues in adaptive thermogenesis. // Genes Dev., 2012, 26, pp. 271–281.
Foster D.O., Frydman M.L. Tissue distribution of cold-induced thermogenesis in conscious warm- or cold-acclimated rats reevaluted from changes in tissue blood flow: the dominant role of brown adipose tissue in replacement of shivering by non-shivering thermogenesis. // Can. J. Physiol. Pharmacol. 1979, 57, pp. 257–270.
Guerra C, Koza RA, Yamashita H, Walsh K, Kozak LP. Emergence of brown adipocytes in white fat in mice is under genetic control. Effects on body weight and adiposity. // J Clin Invest, 1998, 102, pp. 412–420.
Himms-Hagen J. Brown adipose tissue thermogenesis, energy balance and obesity. // Canad. J. Biochem. Cell. Biol., 1984, 62, pp. 610–617.
Himms-Hagen J. Defective thermogenesis in obese animals. // J. Obes. Weight Regul., 1987, 6, pp. 179–199.
Himms-Hagen J., Melnyk A., Zingaretti M.C., Ceresi E., Barbatelli G., Cinti S. Multilocular fat cells in WAT of CL-316243-treated rats derive directly from white adipocytes. // Am. J. Physiol. Cell. Physiol., 2000, 279, pp. C670–C681.
Hondares E., Gallego-Escuredo J., Flachs P., Frontini A., Cereijo R., Goday A., Perugini J., Kopecky P., Giralt M., Cinti M., Kopecky J., Villarroya F. Fibroblast growth factor-21 is expressed in neonatal and pheochromocytoma-induced adult human brown adipose tissue. // Metabolism, 2014, 63, pp. 312–317.
Hope P., Pyle D., Daniels C., Chapman I., Horowitz M., Morley E., Trayhurn P., Kumaratilake J., Wittert G. Identification of brown fat and mechanisms for energy balance in the marsupial Sminthopsis Crassicaudata. // American J.Physiol., 1997, 273, pp. R161–R167.
Hughes D., Jastroch M., Stoneking M., Klingenspor M. Molecular evolution of UCP1 and the evolutionary history of mammalian non-shivering thermogenesis. // BMC Evol. Biol., 2009, vol. 9, doi: 10.1186/1471-2148-9-4.
Jastroch M., Wuertz S., Kloas W., Klingenspor M. Uncoupling protein in fish uncovers an ancient evolutionary history of mammalian nonshivering thermogenesis. // Physiol. Genomics, 2005, 22, pp. 150–156.
Jespersen N., Larsen T., Peijs L., Daugaard S., Homøe P., Loft A, de Jong J., Mathur N., Cannon B., Nedergaard J., Pedersen B.K., Møller K., Scheele C. A classical brown adipose tissue mRNA signature partly overlaps with brite in the supraclavicular region of adult humans // Cell Metab., 2013, 17, pp. 798–805.
Kajimura S., Saito M. A new era in brown adipose tissue biology: molecular control of brown fat development and energy homestasis // Ann. Rew. Physiol., 2014, pp. 13.1–13.25.
Kajimura S., Seale P., Spiegelman B.M. Transcriptional control of brown fat development // Cell Metab., 2010, 11, pp. 257–262.
Kozak L.P., Koza R., Anunciado-Koza R. Brown fat thermogensis and body weight regulation in mice: relevance to humans // International Journal of obesity, 2010, 34, pp. S23–S27.
Lean M. Brown adipose tissue in humans // Proc. Nutr. Soc. 1989, 48, pp. 243–256.
Lee Y.H., Pefcova A.P., Mottillo E.P., Granneman J.G. In vitro identification of bipotential adipocyte progenitors recruited by beta 3-adrenoceptor activation and high fat feeding // Cell Metabolism, 2012, 15, pp. 480–491.
Lee P., Werner C.D., Kebebew E., Celi F.S. Functional thermogenic beige adipogenesis is inducible in human neck fat // Int. J. Obesity, 2014, 38, pp. 170–176.
Lepper C., Fan C.M. Inducible lineage tracing of Pax7-descendant cells reveals embryonic origin of adult satellite cells // Genesis, 2010, 48, pp. 424–436.
Lidell M.E., Betz M.J., Dahlqvist L., Heglind M., Elander L., Slavic M., Mussack T., Nilsson D., Romu T., Nuutila P., Virtanen K., Beuschlein F., Persson A., Borga M., Enerback S. Evidence for two types of brown adipose tissue in humans // Nat. Med., 2013, 19, pp. 631–634.
Loncar D., Afzelius B.A., Cannon B. Epididymal white adipose after cold stress in rats: II Mitochondrial changes // J. Ultrastruct. Mol. Struct. Res., 1988, 101, pp. 199–209.
Long J.Z., Svensson K.J., Tsai L., Zeng X., Roh H.C., Kong X., Rao R.R., Lou J., Lokurkar I., Baur W. et al. A smooth muscle like origin for beige adipocytes // Cell Metab., 2014, 19, pp. 810–820.
Lynes M., Tseng Y-H. The Thermogenic Circuit: Regulators of Thermogenic Competency and Differentiation // Genes Diseases, 2015, 2, pp. 164–172.
Ma S., Yu H., Zhao Z., Luo Z., Chen J., Ni Y., Jin R., Ma L., Wang P., Zhu Z., Li L., Zhong J., Liu D., Nilius B., Zhu Z. Activation of the cold-sensing TRPM8 channel triggers UCP1-dependent thermogenesis and prevents obesity // J Mol Cell Biol. 2012. 4, pp. 88–96.
Medvedev L.N., Elsukova E.I. Can thermogenic adipocytes protect from obesity? // J. Physiol. Biochem., 2015, vol. 71, no. 4, pp. 847–853.
Mizonova O.V., Elsukova E.I., Medvedev L.N. Energy metabolism and biochemical features of adipose tissues in ICR mice after long-term calorie-restricted diet // Bull. Exp. Biol. Med., 2013, 155, pp. 745–747.
Muzik O., Mangner T.J., Leonard W.R., Kumar A., Janisse J., Granneman J. 15O PET measurement of blood flow and oxygen consumption in cold-activated human brown fat // J. Nucl. Med., 2013, 54, pp. 523–531.
Nedergaard J, Cannon B. UCP1 mRNA does not produce heat // Biochim. Biophys. Acta., 2013, 1831, pp. 943–949.
Nedergaard J., Cannon B., The browning of white adipose tissue: some burning issues // Cell Metab., 2014. 20, pp. 396–407.
Nnodim J.O. Development of adipose tissues // Anat.Record.,1987, 219, pp. 331–337.
Nowack J., Dausmann K., Mzilikazi N. Nonshivering thermogenesis in the African lesser bushbaby, Galago moholi. // J. of Experimental biology, 2013, 216, pp. 3811–3817.
Oberkofler H., Dallinger G., Liu Y.M., Hell E., Krempler F., Patsch W. Uncoupling protein gene: quantification of expression levels in adipose tissues of obese and non-obese humans // J. Lipid. Res, 1997, 38, pp. 2125–2133.
Okamatsu-Ogura Y., Fukano K., Tsubota A., Uozumi A., Terao A., Kimura K., Saito M. Thermogenic ability of uncoupling protein 1 in beige adipocytes in mice. // PLoS One., 2013, 8, е84229. doi 10.1371/journal.pone.0084229
Petrovic N., Walden T.B., Shabalina I.G., Timmons J.A., Cannon B., Nedergaard J. Chronic peroxisome proliferator-activated receptor gamma (PPARgamma) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. // J. Biol. Chem, 2010, 285, pp. 7153–7164.
Qian S.W., Tang Y., Li X., Liu Y., Zhang Y., Huang H., Xue R., Yu H., Cuo L., Gao H., Liu Y., Sun X., Li Y.M., Jia W., Tang Q. BMP4-mediated brown fat-like changes in white adipose tissue alter glucose and energy homeostasis. // Proc. Natl. Acad. Sci. USA, 2013, 110, pp. E798–E807.
Rosen E.D., Spiegelman B.M. What we talk about when we talk about fat? // Cell, 2014, 156, pp. 20–44.
Rosenwald M., Perdikari A., Rülicke T., Wolfrum C. Bi-directional interconversion of brite and white adipocytes. // Nat. Cell. Biol, 2013, 15. pp. 659–667.
Rosenwald M., Wolfrum C. The origin and definition of brite versus white and classical brown adipocytes. // Adipocyte. 2014, 3, pp. 4–9.
Rossato M., Granzotto M., Macchi V. Human white adipocytes express the cold receptor TRPM8 which activation induces UCP1 expression, mitochondrial activation and heat production // Mol cell Endocrinol., 2014, 383, no 1–2, pp. 137–146.
Rothwell N.J., Stock M.J. A role of brown adipose tissue in diet–induced thermogenesis. // Nature, 1979, 281, pp. 31–36.
Sanchez-Gurmachez J., Guertin D. Adipocyte Lineages: Tracing Back the Origins of Fat. // Biochim. Biophys. Acta., 2014, 1842, pp. 340–351.
Sanchez-Gurmaches J., Hung C.-M., Sparks C., Tang Y., Li H., Guertin D. PTEN loss in the Myf5 lineage redistributes body fat and reveals subsets of white adipocytes that arise from Myf5 precursors. // Cell. Metab., 2012, 16, pp. 348–362.
Santos G.C., Araujo M.R., Silveira T.C., Soares F.A. Аccumulation of brown adipose tissue and nutritional status. A prospective study of 366 consecutive autopsies. // Arch. Pathol. Lab. Med. 1992, 116, pp. 1152–1154.
Seale P., Bjork B., Yang W., Kajimura S., Chin S., Kuang S., Scime A., Devarakonda S., Conroe H., Erdjument-Bromage H., Tempst P., Rudnicki M., Beier D., Spiegelman B. PRDM16 controls a brown fat/skeletal muscle switch. // Narure, 2008, 454, pp. 961–967.
Schulz T.J., Huang P., Huang T.L., Xue R., McDougall L.E., Townsend K.L., Cypess A.M., Mishina Y., Gussoni E., Tseng Y.H. Brown-fat paucity due to impaired BMP signalling induces compensatory browning of white fat. // Nature, 2013, 495, pp. 379–383.
Shabalina I.G., Petrovic N., de Jong J., Kalinovich A., Cannon B., Nedergaard J. UCP1 in Brite/Beige adipose tissue mitochondria is functionally thermogenic. // Cell. Reports, 2013, 5, pp. 1196–1203.
Shan T., Liang X., Bi P., Zhang P., Liu W., Kuang S. Distinct populations of adipogenic and myogenic Myf5-lineage progenitors in white adipose tissues. // J. Lipid Res., 2013, 54, pp. 2214–2224.
Sharp L.Z., Shinoda K., Ohno H., Scheel D., Tomoda E., Ruiz L., Hu H., Wang L., Pavlova Z., Gilsanz V., Kajimura S. Human BAT possesses molecular signatures that resemble beige/brite cells // PLoS One, 2012, 7, e49452. doi: 10.1371/journal.pone.0049452
Shimizu I., Aprahamian T., Kikuchi R., Shimizu A., Papanicolaou K., MacLauchlan S., Maruyama S., Walsh K. Vascular rarefaction mediates whitening of brown fat in obesity. // J. Clin. Invest., 2014, 124, pp. 2099–2112.
Tauchi-Sato K., Ozeki S., Houjou T., Taguchi R., Fujimoto T. The surface of lipid droplets is a phospholipid monolayer with a unique fatty acid composition. // J. Biol. Chem., 2002, 277, pp. 44507–44512.
Timmons J.A., Wennmalm K., Larsson O., Walden T.B., Lassmann T., Petrovic N., Hamilton D.L., Gimeno R.E., Wahlestedt C., Baar K., Nedergaard J., Cannon B. Myogenic gene expression signature establishes that brown and white adipocytes originate from distinct cell lineages // Proc. Natl. Acad. Sci. USA, 2007, 104, pp. 4401–4406.
Trayhurn P., Beattie J. Physiological role of adipose tissue: white adipose tissue as an endocrine and secretory organ. // Proc. Nutr. Soc., 2001, 60, pp. 329–339.
Van Marken Lichtenbelt W.D., Vanhommerig J.W., Smulders N.M., Drossaerts J., Kemerink G., Bouvy N., Schrauwen P., Teule G. Cold-activated brown adipose tissue in healthy men // N. Engl. J. Med., 2009, 360, pp. 1500–1508.
Varela-Rodríguez B., Pena-Bello L., Juiz-Valina P., Vidal-Bretal B., Cordido B., Sangiao-Alvarellos S. FNDC5 expression and circulating irisin levels are modified by diet and hormonal conditions in hypothalamus, adipose tissue and muscle. // Sci. Rep.,2016, vol. 6. doi: 10.1038/srep29898
Vijgen G., Bouvy N., Teule G, Brans B., Schrauwen P., Van Marken Lichtenbelt W. Brown adipose tissue in morbidly obese subjects // РLoS One, 2011, vol. 6, no 2, e17247. doi: 10.1371/journal.pone.0017247
Villarroya J., Cereijo R., Villarroya F. An endocrine role for brown adipose tissue? // Am. J. Physiol. Endocrinol. Metab., 2013, 305, pp. E567–E572.
Virtanen K.A., Lidell M.E., Orava J., Heglind M., Westergren R., Niemi T., Taittonen M., Laine J., Savisto N.J., Enerbäck S., Nuutila P. Functional brown adipose tissue in healthy adults // N. Engl. J. Med., 2009, 360, pp. 1518–1525.
Walden T.B., Hansen I.R., Timmons J.A., Cannon B., Nedergaard J. Recruited vs. nonrecruited molecular signatures of brown, “brite,” and white adipose tissues // Am. J. Physiol. Endocrinol. Metab., 2012, 302, pp. E19–E31.
Wang G., Zhao X., Lin J. The brown fat secretome: metabolic functions beyond thermogenesis // Trends. Endocrinol. Metab., 2015, 26, pp. 231–237.
Wang Q.A., Tao C., Gupta R.K., Scherer P. Tracking adipogenesis during white adipose tissue development, expansion and regeneration // Nat Med., 2013, 19, pp. 1338–1344.
Whittle A.J., Carobbio S., Martins L., Slavik M., Hondares E., Vazquez M., Morgan D., Csikasz R., Gallego R., Rodrigues-Cuenca S., Dale M., Virtue S., Villarroya F., Cannon B, Rahmouni K., Lopez M., Vidal Puig A. BMP8B increases brown adipose tissue thermogenesis through both central and peripheral actions // Cell, 2012, 149, pp. 871–885.
Wu J., Boström P., Sparks L., Ye L., Choi J.H., Giang A-H., Khandekar M., Virtanen K.A., Nuutila P., Schaadt G., Huang K., Tu H., Lichtenbelt W., Hoels J., Enerbak S., Schrauwen P., Spiegelman B.M. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human // Cell, 2012, 150, pp. 366–376.
Xue B., Rim J.S., Hogan J.C., Coulter A.A., Koza R.A., Kozak L.P. Genetic variability affects the development of brown adipocytes in white fat but not in interscapular brown fat // J. Lipid Res., 2007, 48, pp. 41–51.
Young P., Arch I.R.S., Ashwell M. Brown adipose tissue in the parametrial fat pad of the mouse // FEBS Lett., 1984, 167, pp 10–14.
Zingaretti M.C., Crosta F., Vitali A., Guerrieri M., Frontini A., Cannon B., Nedergaard J., Cinti S. The presence of UCP1 demonstrates that metabolically active adipose tissue in the neck of adult humans truly represents brown adipose tissue // FASEB J., 2009, 23, pp. 3113–3120.
DOI: https://doi.org/10.12731/wsd-2016-8-97-127
Ссылки
- На текущий момент ссылки отсутствуют.
(c) 2016 В мире научных открытий
ISSN 2658-6649 (print)
ISSN 2658-6657 (online)