ПРЯНЫЕ И АРОМАТИЧЕСКИЕ РАСТЕНИЯ В ПСИХИАТРИИ И НЕВРОЛОГИИ: НАУЧНЫЙ ОБЗОР. ЧАСТЬ II.

Roman Aleksandrovich Bekker, Yuriy Vitalevich Bykov


Аннотация


Цель исследования: Представить читателю подробный исторический обзор о применении пряных и ароматических растений в психиатрии и неврологии, а также данные современных исследований об их эффективности в терапии различных психических и психосоматических патологий, нейродегенеративных заболеваний.

Методология проведения работы: В качестве начальной отправной точки для нашей работы мы взяли список всех применяемых в кулинарии различных народов специй и приправ из английской Википедии, как один из наиболее полных подобных списков в Интернете (en.wikipedia.org/wiki/List_of_spices). Затем мы изучили современную доказательную базу и исторические данные о применении каждого из упомянутых в данном списке растений, используя поисковые системы PubMed, Google Scholar, Science Direct, Web of Science, и представили найденные данные в настоящем обзоре.

Результаты: Полученные нами в результате составления настоящего обзора данные свидетельствуют о значительном терапевтическом потенциале многих пряных и ароматических растений в психиатрии и неврологии, в особенности в лечении лёгких форм тревожных и депрессивных расстройств, лёгких когнитивных нарушений, а также в лечении таких психосоматических заболеваний, как синдром раздражённого кишечника, мигрень, синдром предменструального напряжения, климактерические расстройства. Доказательная база для применения в психиатрии и неврологии разных пряных и ароматических растений различна по качеству. Для одних пряных и ароматических растений и извлечённых из них биологически активных веществ пока существуют лишь данные экспериментов на животных в сочетании с эмпирическим опытом народной медицины, для других – имеются предварительные обнадёживающие результаты открытых пилотных исследований на человеке, для третьих, таких, как куркумин, сафранал – положительные результаты небольших рандомизированных клинических испытаний. Важно, однако, то, что исследование психотропного и нейротропного потенциала пряных и ароматических растений, судя по количеству публикаций именно в последние годы (2013–2017), рассматривается как одно из перспективных направлений для поиска новых антидепрессантов, анксиолитиков и антидементных препаратов.

Область применения результатов: Полученные нами результаты дают теоретические и практические основания для применения экстрактов из некоторых пряных и ароматических растений, таких, как куркумин, сафранал, пиперин, эфирное масло лаванды, в лечении лёгких форм тревожных и депрессивных состояний, лёгких когнитивных нарушений, особенно у пациентов, отказывающихся от фармакотерапии или плохо её переносящих.


Ключевые слова


пряности; пряные растения; ароматические растения; история психиатрии; шафран; анис; бадьян; черный перец; имбирь; ваниль; куркума; кумин; кориандр; корица; базилик; тимьян; пажитник; сельдерей; манго; лук; чеснок; горчица; мелисса; шалфей; кожура цитрусо

Полный текст:

PDF>PDF

Литература


Akhondzadeh S. et al. Melissa officinalis extract in the treatment of patients with mild to moderate Alzheimer’s disease: a double blind, randomised, placebo controlled trial //Journal of Neurology, Neurosurgery & Psychiatry. 2003. V. 74. №. 7, рр. 863–866.

Alijaniha F. et al. Heart palpitation relief with Melissa officinalis leaf extract: double blind, randomized, placebo controlled trial of efficacy and safety //Journal of ethnopharmacology. 2015. V. 164, рр. 378–384.

Aparecida Gelfuso E. et al. Anxiety: a systematic review of neurobiology, traditional pharmaceuticals and novel alternatives from medicinal plants //CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders). 2014. V. 13. №. 1, рр. 150–165.

Asadbegi M. et al. Investigation of thymol effect on learning and memory impairment induced by intrahippocampal injection of amyloid beta peptide in high fat diet-fed rats //Metabolic Brain Disease. 2017. V. 32. №. 3, рр. 827–839.

Assad T., Khan R.A. Effect of methanol extract of Trigonella foenum-graecum L. seeds on anxiety, sedation and motor coordination //Metabolic brain disease. 2017. V. 32. №. 2, рр. 343–349.

Awad R. et al. Bioassay-guided fractionation of lemon balm (Melissa officinalis L.) using an in vitro measure of GABA transaminase activity //Phytotherapy Research. 2009. V. 23. №. 8, рр. 1075–1081.

Ayaz M. et al. Neuroprotective and Anti-Aging Potentials of Essential Oils from Aromatic and Medicinal Plants //Frontiers in aging neuroscience. 2017. V. 9. C. 168.

Baluchnejadmojarad T. et al. S-allylcysteine ameliorates cognitive deficits in streptozotocin-diabetic rats via suppression of oxidative stress, inflammation, and acetylcholinesterase //European journal of pharmacology. 2017. V. 794, рр. 69–76.

Banji D. et al. Zingerone regulates intestinal transit, attenuates behavioral and oxidative perturbations in irritable bowel disorder in rats //Phytomedicine. 2014. V. 21. №. 4, рр. 423–429.

Cao C., Su M., Zhou F. Mangiferin inhibits hippocampal NLRP3 inflammasome and exerts antidepressant effects in a chronic mild stress mice model //Behavioural Pharmacology. 2017. V. 28. №. 5, рр. 356–364.

Cappelli V. et al. Evaluation of the efficacy of a new nutraceutical product in the treatment of postmenopausal symptoms //Minerva ginecologica. 2015. V. 67. №. 6, рр. 515–521.

Cases J. et al. Pilot trial of Melissa officinalis L. leaf extract in the treatment of volunteers suffering from mild-to-moderate anxiety disorders and sleep disturbances //Mediterranean journal of nutrition and metabolism. 2011. V. 4. №. 3, рр. 211–218.

Ciftci O., Oztanir M. N., Cetin A. Neuroprotective effects of β-myrcene following global cerebral ischemia/reperfusion-mediated oxidative and neuronal damage in a C57BL/J6 mouse //Neurochemical research. 2014. V. 39. №. 9, рр. 1717–1723.

Conrad P., Adams C. The effects of clinical aromatherapy for anxiety and depression in the high risk postpartum womena pilot study //Complementary therapies in clinical practice. 2012. V. 18. №. 3, рр. 164–168.

Costa C. A. R. A. et al. Citrus aurantium L. essential oil exhibits anxiolytic-like activity mediated by 5-HT1A-receptors and reduces cholesterol after repeated oral treatment //BMC complementary and alternative medicine. 2013. V. 13. №. 1. P. 42.

Deng X.Y. et al. Geraniol produces antidepressant-like effects in a chronic unpredictable mild stress mice model //Physiology & behavior. 2015. V. 152, рр. 264–271.

Dennehy C. Omega-3 Fatty Acids and Ginger in Maternal Health: Pharmacology, Efficacy, and Safety //Journal of Midwifery & Women’s Health. 2011. V. 56. №. 6, рр. 584–590.

Dhingra D., Kumar V. Evidences for the involvement of monoaminergic and GABAergic systems in antidepressant-like activity of garlic extract in mice //Indian journal of pharmacology. 2008. V. 40. №. 4. P. 175.

El-Alfy A.T. et al. Indirect modulation of the endocannabinoid system by specific fractions of nutmeg total extract //Pharmaceutical biology. 2016. V. 54. №. 12, рр. 2933–2938.

Flam B. et al. Seizures associated with intentional severe nutmeg intoxication //Clinical Toxicology. 2015. V. 53. №. 9, рр. 917–917.

Fu Y. et al. Mangiferin regulates cognitive deficits and heme oxygenase-1 induced by lipopolysaccharide in mice //International immunopharmacology. 2015. V. 29. №. 2, рр. 950–956.

Ghanbarabadi M. et al. Neuroprotective and memory enhancing effects of auraptene in a rat model of vascular dementia: Experimental study and histopathological evaluation //Neuroscience letters. 2016. V. 623, рр. 13–21.

Ghasemi S. et al. Beneficial effects of garlic on learning and memory deficits and brain tissue damages induced by lead exposure during juvenile rat growth is comparable to the effect of ascorbic acid //Drug and chemical toxicology. 2017. V. 40. №. 2, рр. 206–214.

Hamidpour M. et al. Chemistry, pharmacology, and medicinal property of sage (salvia) to prevent and cure illnesses such as obesity, diabetes, depression, dementia, lupus, autism, heart disease, and cancer //Journal of traditional and complementary medicine. 2014. V. 4. №. 2, рр. 82–88.

Han L.K. et al. Antiobesity actions of Zingiber officinale Roscoe //Yakugaku zasshi: Journal of the Pharmaceutical Society of Japan. 2005. V. 125. №. 2, рр. 213–217.

Hayfaa A.A.S., Sahar A. A. M. A. S., Awatif M. A. S. Evaluation of analgesic activity and toxicity of alkaloids in Myristica fragrans seeds in mice //Journal of pain research. 2013. V. 6. P. 611.

Infante-Garcia C. et al. Long-Term Mangiferin Extract Treatment Improves Central Pathology and Cognitive Deficits in APP/PS1 Mice //Molecular neurobiology. 2017. V. 54. №. 6, рр. 4696–4704.

Jangra A. et al. Protective effect of mangiferin against lipopolysaccharide-induced depressive and anxiety-like behaviour in mice //European journal of pharmacology. 2014. V. 740, рр. 337–345.

Kabuto H. et al. Zingerone [4-(4-hydroxy-3-methoxyphenyl)-2-butanone] prevents 6-hydroxydopamine-induced dopamine depression in mouse striatum and increases superoxide scavenging activity in serum //Neurochemical research. 2005. V. 30. №. 3, рр. 325–332.

Kalshetti P.B. et al. Effects of 4-hydroxyisoleucine from Fenugreek Seeds on depression-like behavior in socially isolated olfactory bulbectomized rats //Pharmacognosy magazine. 2015. V. 11. №. Suppl 3. P. S388.

Kasbe P., Jangra A., Lahkar M. Mangiferin ameliorates aluminium chloride-induced cognitive dysfunction via alleviation of hippocampal oxido-nitrosative stress, proinflammatory cytokines and acetylcholinesterase level //Journal of Trace Elements in Medicine and Biology. 2015. V. 31, рр. 107–112.

Kasper S. et al. Silexan in anxiety disorders: clinical data and pharmacological background //The World Journal of Biological Psychiatry. 2017. V. 2017, рр. 1–9.

Kavitha M. et al. Mangiferin attenuates MPTP induced dopaminergic neurodegeneration and improves motor impairment, redox balance and Bcl-2/Bax expression in experimental Parkinson’s disease mice //Chemico-biological interactions. 2013. V. 206. №. 2, рр. 239–247.

Kawahata I. et al. Fermented Citrus reticulata (ponkan) fruit squeezed draff that contains a large amount of 4′-demethyl nobiletin prevents MK 801-induced memory impairment //Journal of Natural Medicines. 2017, рр. 1–15.

Kennedy D.O. et al. Effects of cholinesterase inhibiting sage (Salvia officinalis) on mood, anxiety and performance on a psychological stressor battery //Neuropsychopharmacology. 2006. V. 31. №. 4. P. 845.

Kennedy D.O. et al. Modulation of mood and cognitive performance following acute administration of single doses of Melissa officinalis (Lemon balm) with human CNS nicotinic and muscarinic receptor-binding properties //Neuropsychopharmacology. 2003. V. 28. №. 10. P. 1871.

Komaki A. et al. Study of the effect of extract of Thymus vulgaris on anxiety in male rats //Journal of traditional and complementary medicine. 2016. V. 6. №. 3, рр. 257–261.

Komiya M., Takeuchi T., Harada E. Lemon oil vapor causes an anti-stress effect via modulating the 5-HT and DA activities in mice //Behavioural brain research. 2006. V. 172. №. 2, рр. 240–249.

Lin S.H. et al. A medicinal herb, Melissa officinalis L. ameliorates depressive-like behavior of rats in the forced swimming test via regulating the serotonergic neurotransmitter //Journal of ethnopharmacology. 2015. V. 175, рр. 266–272.

Liu Y.W. et al. Mangiferin upregulates glyoxalase 1 through activation of Nrf2/are signaling in central neurons cultured with high glucose //Molecular neurobiology. 2017. V. 54. №. 6, рр. 4060–4070.

Liu Y.W. et al. Suppression of methylglyoxal hyperactivity by mangiferin can prevent diabetes-associated cognitive decline in rats //Psychopharmacology. 2013. V. 228. №. 4, рр. 585–594.

López V. et al. Exploring pharmacological mechanisms of lavender (Lavandula angustifolia) essential oil on central nervous system targets //Frontiers in pharmacology. 2017. V. 8. C. 280.

Lopresti A.L. Curcumin for neuropsychiatric disorders: a review of in vitro, animal and human studies //Journal of Psychopharmacology. 2017. V. 31. №. 3, рр. 287–302.

Luo G.Q. et al. Mangiferin prevents corticosterone-induced behavioural deficits via alleviation of oxido-nitrosative stress and down-regulation of indoleamine 2, 3-dioxygenase (IDO) activity //Neurological Research. 2017, рр. 1–10.

Marschollek C. et al. Effects of garlic extract on spreading depression: In vitro and in vivo investigations //Nutritional neuroscience. 2017. V. 20. №. 2, рр. 127–134.

Martinez D.M. et al. Antidepressant-like activity of dehydrozingerone: involvement of the serotonergic and noradrenergic systems //Pharmacology Biochemistry and Behavior. 2014. V. 127, рр. 111–117.

Martinez-Badía J., Martinez-Raga J. Who says this is a modern disorder? The early history of attention deficit hyperactivity disorder //World journal of psychiatry. 2015. V. 5. №. 4. P. 379.

Mechan A. O. et al. Monoamine reuptake inhibition and mood-enhancing potential of a specified oregano extract //British journal of nutrition. 2011. V. 105. №. 8, рр. 1150–1163.

Matsui N., Kido Y., Okada H. et al. Phenylbutenoid dimers isolated from Zingiber purpureum exert neurotrophic effects on cultured neurons and enhance hippocampal neurogenesis in olfactory bulbectomized mice. //Neuroscience Letters. 2012. V. 513. № 1, рр. 72–77.

Melo F. H. C. et al. Antidepressant-like effect of carvacrol (5-Isopropyl-2-methylphenol) in mice: involvement of dopaminergic system //Fundamental & clinical pharmacology. 2011. V. 25. №. 3, рр. 362–367.

Melo F. H. C. et al. Anxiolytic-like effect of Carvacrol (5-isopropyl-2-methylphenol) in mice: involvement with GABAergic transmission //Fundamental & clinical pharmacology. 2010. V. 24. №. 4, рр. 437–443.

Miu J. et al. Factors associated with cognitive function in older adults in Mexico // Global health action. 2016. V. 9. №. 1. P. 30747.

Mohebitabar S. et al. Therapeutic efficacy of rose oil: A comprehensive review of clinical evidence // Avicenna Journal of Phytomedicine. 2017. V. 7. №. 3, рр. 206–213.

Mukherjee D., Banerjee S. Learning and memory promoting effects of crude garlic extract. 2013.

Na J. et al. Antistress Effects of Rosa rugosa Thunb. on Total Sleep DeprivationInduced Anxiety-Like Behavior and Cognitive Dysfunction in Rat: Possible Mechanism of Action of 5-HT6 Receptor Antagonist //Journal of medicinal food. 2016. V. 19. №. 9, рр. 870–881.

Nade V.S. et al. Neuroprotective effect of Hibiscus rosa sinensis in an oxidative stress model of cerebral post-ischemic reperfusion injury in rats //Pharmaceutical biology. 2010. V. 48. №. 7, рр. 822–827.

Nishiyama N. et al. Ameliorative effect of S-allylcysteine, a major thioallyl constituent in aged garlic extract, on learning deficits in senescence-accelerated mice // The Journal of nutrition. 2001. V. 131. №. 3, рр. 1093S–1095S.

Nogueira E., Rosa G.J.M., Vassilieff V.S. Involvement of GABA A-benzodiazepine receptor in the anxiolytic effect induced by hexanic fraction of Rubus brasiliensis // Journal of ethnopharmacology. 1998. V. 61. №. 2, рр. 119–126.

Park S.K. et al. Ameliorating effects of ethyl acetate fraction from onion (Allium cepa L.) flesh and peel in mice following trimethyltin-induced learning and memory impairment //Food Research International. 2015. V. 75, рр. 53–60.

Peleg A. et al. Effect of garlic on lipid profile and psychopathological parameters in people with mild to moderate hypercholesterolemia //The Israel Medical Association journal: IMAJ. 2003. V. 5. №. 9, рр. 637–640.

Pertz H.H. et al. Effects of ginger constituents on the gastrointestinal tract: role of cholinergic M3 and serotonergic 5-HT3 and 5-HT4 receptors //Planta medica. 2011. V. 77. №. 10, рр. 973–978.

Qiang L.Q. et al. Combined administration of the mixture of honokiol and magnolol and ginger oil evokes antidepressant-like synergism in rats //Archives of pharmacal research. 2009. V. 32. №. 9, рр. 1281–1292.

Rao A. et al. Testofen, a specialised Trigonella foenum-graecum seed extract reduces age-related symptoms of androgen decrease, increases testosterone levels and improves sexual function in healthy aging males in a double-blind randomised clinical study // The Aging Male. 2016. V. 19. №. 2, рр. 134–142.

Sakakibara H. et al. Antidepressant-like effect of onion (Allium cepa L.) powder in a rat behavioral model of depression //Bioscience, biotechnology, and biochemistry. 2008. V. 72. №. 1, рр. 94–100.

Salah S.M., Jäger A.K. Screening of traditionally used Lebanese herbs for neurological activities // Journal of ethnopharmacology. 2005. V. 97. №. 1, рр. 145–149.

Sein Anand J., Barwina M., Waldman W. Acute intoxication with nutmeg used as a recreational purpose--a case report //Przeglad lekarski. 2013. V. 70. №. 8, рр. 693–694.

Setzer W.N. Essential oils and anxiolytic aromatherapy //Natural product communications. 2009. V. 4. №. 9, рр. 1305–1316.

Shakeri A., Sahebkar A., Javadi B. Melissa officinalis L.A review of its traditional uses, phytochemistry and pharmacology //Journal of ethnopharmacology. 2016. V. 188, рр. 204–228.

Sheehan P. Hyperemesis gravidarum: assessment and management //Australian family physician. 2007. V. 36. №. 9. P. 698.

Stohs S.J., Preuss H.G., Shara M. A review of the receptor-binding properties of p-synephrine as related to its pharmacological effects //Oxidative Medicine and Cellular Longevity. 2011. V. 2011. eID 482973.

Sudheeran S.P. et al. Safety, tolerance, and enhanced efficacy of a bioavailable formulation of curcumin with fenugreek dietary fiber on occupational stress: a randomized, double-blind, placebo-controlled pilot study //Journal of clinical psychopharmacology. 2016. V. 36. №. 3, рр. 236–243.

Swamy M.K., Sinniah U.R. A comprehensive review on the phytochemical constituents and pharmacological activities of Pogostemon cablin Benth.: an aromatic medicinal plant of industrial importance //Molecules. 2015. V. 20. №. 5, рр. 8521–8547.

Tabrizian K. et al. Auraptene consolidates memory, reverses scopolamine-disrupted memory in passive avoidance task, and ameliorates retention deficits in mice //Iranian journal of basic medical sciences. 2015. V. 18. №. 10. P. 1014.

Taiwo A. E. et al. Anxiolytic and antidepressant-like effects of Melissa officinalis (lemon balm) extract in rats: Influence of administration and gender //Indian journal of pharmacology. 2012. V. 44. №. 2. P. 189.

Tavakkoli-Kakhki M. et al. Food-based strategies for depression management from Iranian traditional medicine resources //Iranian Red Crescent Medical Journal. 2014. V. 16. №. 2.

Tavakkoli-Kakhki M. et al. Omega-3 and omega-6 content of medicinal foods for depressed patients: implications from the Iranian Traditional Medicine //Avicenna Journal of Phytomedicine. 2014. V. 4. №. 4. P. 225.

Thakur A.K., Chatterjee S.S., Kumar V. Antidepressant-like effects of Brassica juncea L. leaves in diabetic rodents //Indian journal of experimental biology. 2014. V. 52. №. 6. P. 613.

Thorajak P. et al. Effects of Aged Garlic Extract on Cholinergic, Glutamatergic and GABAergic Systems with Regard to Cognitive Impairment in Aβ-Induced Rats // Nutrients. 2017. V. 9. №. 7. P. 686.

Watanabe E. et al. Effects of bergamot (Citrus bergamia (Risso) Wright & Arn.) essential oil aromatherapy on mood states, parasympathetic nervous system activity, and salivary cortisol levels in 41 healthy females //Complementary Medicine Research. 2015. V. 22. №. 1. P. 43–49.

Yi L. T. et al. Orthogonal array design for antidepressant compatibility of polysaccharides from Banxia-Houpu decoction, a traditional Chinese herb prescription in the mouse models of depression //Archives of pharmacal research. 2009. V. 32. №. 10. P. 1417.

Yu Y.M., Lin H.C., Chang W. C. Carnosic acid prevents the migration of human aortic smooth muscle cells by inhibiting the activation and expression of matrix metalloproteinase-9 // British journal of nutrition. 2008. V. 100. №. 4, рр. 731–738.

Zameer S. et al. A review on therapeutic potentials of Trigonella foenum graecum (fenugreek) and its chemical constituents in neurological disorders: Complementary roles to its hypolipidemic, hypoglycemic, and antioxidant potential // Nutritional Neuroscience. 2017. V. 2017, рр. 1–7.

Zhang L. et al. Trans-cinnamaldehyde improves memory impairment by blocking microglial activation through the destabilization of iNOS mRNA in mice challenged with lipopolysaccharide // Neuropharmacology. 2016. V. 110, рр. 503–518.




DOI: https://doi.org/10.12731/wsd-2018-2-40-73

Ссылки

  • На текущий момент ссылки отсутствуют.




(c) 2018 Roman Aleksandrovich Bekker, Yuriy Vitalevich Bykov

Лицензия Creative Commons
Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-NoDerivatives» («Атрибуция — Некоммерческое использование — Без производных произведений») 4.0 Всемирная.

ISSN 2658-6649 (print)

ISSN 2658-6657 (online)

HotLog Яндекс цитирования