АДАПТИВНЫЕ ОСОБЕННОСТИ ДИНАМИКИ СОДЕРЖАНИЯ ХЛОРОФИЛЛА В ХВОЕ PINUS SYLVESTRIS И PICEA OBOVATA В УСЛОВИЯХ ВЕГЕТАЦИИ ЮГА ВОСТОЧНОЙ СИБИРИ

Maria Vladimirovna Oskorbina, Natalya Eugenyevna Korotaeva, Galina Georgievna Suvorova


Аннотация


Одним из важнейших факторов при изучении процесса фотосинтеза является состояние пигментного фонда фотосинтетического аппарата. При разных климатических и природных условиях фотосинтетическая активность будет стремиться к максимальным значениям. В условиях Юга Восточной Сибири наибольшее распространение имеют хвойные древостои, устойчивость и биологическая продуктивность которых напрямую зависит от реализации фотосинтетического потенциала в период вегетации. Материал отбирался на экспериментальном участке, заложенном на окраине г. Иркутска (территория СИФИБР СО РАН). Содержание хлорофилла а и b в хвое определяли с помощью спектрофотометра СФ 56 (ЛОМО, Россия) в вытяжке с ацетоном в течение исследуемых вегетационных периодов. Фотосинтетическое поглощение углекислого газа охвоенными побегами второго года жизни сосны и ели регистрировали многоканальной установкой, смонтированной на основе ИК-газоанализатора «Infralyt-4». В исследовании представлен анализ динамики содержания пигментов фотосинтетического аппарата сосны обыкновенной (Pinus sylvestris L.) и ели сибирской (Picea obovata Ledeb.) в условиях оптимального увлажнения и неблагоприятного по уровню почвенной влажности периода вегетации. Показаны два типа стратегии фотосинтеза хвойных при различных условиях увлажнения. Установлено, что при различных условиях почвенного увлажнения периода вегетации у хвойных динамика содержания хлорофилла в светособирающих комплексах фотосистемы II имеет несколько периодов увеличения.

Ключевые слова


хлорофилл; светособирающие комплексы; фотосинтетический аппарат; фотосинтез; адаптация; климатические факторы; хвойные

Полный текст:

PDF>PDF (English)

Литература


Rubin A. B., Krendeleva T. E. Reguliatsiia pervichnykh protsessov fotosinteza [Regulation of primary photosynthesis processes]. Biophysics, 2004, vol. 49, pp. 239-253.

Tyutereva E. V., Dmitrieva V. A., Voitsekhovskaya O. V. Hlorofill b kak istochnik signalov, regulirujushhih razvitie i produktivnost’ rastenij [Chlorophyll b as a source of signals regulating the development and productivity of plants]. Agricultural biology, 2017, vol. 52, pp. 843-855. DOI: 10.15389/agrobiology.2017.5.843rus.

Lichtenthaler H.K. Biosynthesis, accumulation and emission of carotenoids, tocopherol, plastoquinone and isoprene in leaves under high photosynthetic irradiance. Photosynthesis Research, 2007, vol. 92, pp. 163–179. doi: 10.1007/s11120-007-9204-y.

Voitsekhovskaja O.V., Tyutereva E.V. Chlorophyll b in angiosperms: functions in photosynthesis, signaling and ontogenetic regulation. Journal of Plant Physiology, 2015, vol. 189, pp. 51-64. doi: 10.1016/j.jplph.2015.09.013.

Bukhov N.G. Dynamic light regulation of photosynthesis, Plant Physiology, 2004, vol. 51, pp. 825–837. DOI: 10.1023/B:RUPP.0000047822.66925.bf.

Beale S.I. Enzymes of chlorophyll biosynthesis. Photosynthesis Research, 1999, vol. 60, pp. 43-73. https://doi.org/10.1023/A:1006297731456.

Nakagawara E., Sakuraba Y., Yamasato A., Tanaka R., Tanaka A. Clp protease controls chlorophyll b synthesis by regulating the level of chlorophyllide a oxygenase. The Plant Journal, 2007, vol. 49, pp. 800-809. doi: 10.1111/j.1365-313X.2006.02996.x.

Yamasato A., Nagata N., Tanaka R., Tanaka A. The N-terminal domain of chlorophyllide a oxygenase confers protein instability in response to chlorophyll b accumulation in Arabidopsis. The Plant Cell, 2005, vol. 17, pp. 1585-1597. doi: 10.1105/tpc.105.031518.

Formaggio E., Cinque G., Bassi R. Functional architecture of the major lightharvesting complex from higher plants. Journal of Molecular Biology, 2001, vol. 314, pp. 1157-1166. doi: 10.1006/jmbi.2000.5179.

Tyutereva E.V., Evkaikina A.I., Ivanova, A.N., Voitsekhovskaja O.V. The absence of chlorophyll b affects lateral mobility of photosynthetic complexes and lipids in grana membranes of Arabidopsis and barley chlorina mutants. Photosynthesis Research, 2017, vol. 113, pp. 357-370. DOI: 10.1007/s11120-017-0376-9.

Tanaka A., Ito H., Tanaka R., Tanaka N.K., Yoshida K., Okada K. Chlorophyll a oxygenase (CAO) is involved in chlorophyll b formation from chlorophyll a. Proceedings of the National Academy of Sciences, 1998, vol. 95, pp. 12719-12723. https://doi.org/10.1073/pnas.95.21.12719.

Hoober J.K., Eggink L.L., Chen M. Chlorophylls, ligands and assembly of lightharvesting complexes in chloroplasts. Photosynthesis Research, 2007, vol. 94, pp. 387-400. DOI 10.1007/s11120-007-9181-1.

Shmakova N. Yu., Markovskaya, E. F. Photosynthetic pigments of plants and lichens of the Arctic tundra of Western Svalbard. Plant Physiology. 2010, vol. 57, pp. 819 – 825. DOI: 10.1134/S1021443710060038.

Suvorova G. G. Fotosintez hvojnyh derev’ev v uslovijah Sibiri [Photosynthesis of coniferous trees in Siberia]. Novosibirsk: Publishing house “Geo”, 2009.194 p.

Ivanova M.V., Suvorova G.G. Struktura i funkcija fotosinteticheskogo apparata hvojnyh v uslovijah juga Vostochnoj Sibiri [Structure and function of the photosynthetic apparatus of conifers in the South of Eastern Siberia]. Irkutsk: Publishing house of the Institute of Geography SB RAS, 2014. 102 p.

Shlyk A.A. Opredelenie hlorofillov i karotinoidov v jekstraktah zelenyh list’ev [Determination of chlorophylls and carotenoids in green leaf extracts] Biohimicheskie metody v fiziologii rastenij [Biochemical methods in plant physiology]. Moscow: Nauka, 1971. 226 p.

Maslova T.G., Popova I.A. Adaptive properties of the plant pigment systems. Photosynthetica, 1993, vol. 29, pp. 195–203.

Shcherbatyuk A. S., Rusakova L. V., Suvorova G. G., Yankova L. S. Uglekislotnyj gazoobmen hvojnyh Predbajkal’ja [Сarbon Dioxide gas exchange of coniferous forests of the pre-Baikal region]. Novosibirsk: Nauka. Siberian branch, 1991. 135 p.

Fyodorovsky D.V. Metody opredelenija nekotoryh fizicheskih i vodnyh svojstv pochvy, primenjaemye pri polevyh i vegetacionnyh opytah. Agrohimicheskie metody issledovanija pochv [Determination of water and physical properties of the soil during vegetation experiments. Agrochemical methods of soil research]. Moscow: Nauka, 1975. P. 296-330.

Andriyanova Y, Tarchevsky I. Hlorofill i produktivnost’ rastenij [Chlorophyll and plant productivity]. Moscow: Nauka, 2000. 135 p.

Oskorbina M.V., Kopytova L.D., Suvorova G.G., Oskolkov V.A., Yankova L.S. Vlijanie klimaticheskih uslovij na dinamiku zelenyh pigmentov i fotosinteticheskuju produktivnost’ hvojnyh [Influence of climatic conditions on the dynamics of green pigments and photosynthetic productivity of coniferous trees]. Vestnik KrasGAU, 2010, vol. 4 pp.25-30.

Kim E.H., Li X.P., Razeghifard R., Anderson J.M., Niyogi K.K., Pogson B.J., Chow W.S. The multiple roles of light-harvesting chlorophyll a/b-protein complexes define structure and optimize function of Arabidopsis chloroplasts: a study using two 854 chlorophyll b-less mutants. Biochimica et Biophysica Acta, 2009, vol. 1787, pp. 973-984. doi: 10.1016/j.bbabio.2009.04.009.

Miller K.R., Miller G.J., McIntyre K.R. The light-harvesting chlorophyll-protein complex of photosystem II. Its location in the photosynthetic membrane. Journal of Cell Biology, 1976, vol. 71, pp. 624-638. doi: 10.1083/jcb.71.2.624.




DOI: https://doi.org/10.12731/2658-6649-2020-12-5-113-127

Ссылки

  • На текущий момент ссылки отсутствуют.




(c) 2020 Maria Vladimirovna Oskorbina, Natalya Eugenyevna Korotaeva, Galina Georgievna Suvorova

Лицензия Creative Commons
Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-NoDerivatives» («Атрибуция — Некоммерческое использование — Без производных произведений») 4.0 Всемирная.

ISSN 2658-6649 (print)

ISSN 2658-6657 (online)

HotLog Яндекс цитирования